
Frequency Response Plots
The frequency response of a fixed linear system is typically represented graphically, using one of
three types of frequency response plots. A polar plot is simply a plot of the vector H(jcS) in the
complex plane, where Re(o>) is the abscissa and Im(cu) is the ordinate. A logarithmic plot or Bode
diagram consists of two displays: (1) the magnitude ratio in decibels Mdb(o>) [where Mdb(w) = 20 log
M(o))] versus log w, and (2) the phase angle in degrees <£(a/) versus log a). Bode diagrams for
normalized first- and second-order systems are given in Fig. 27.23. Bode diagrams for higher-order
systems are obtained by adding these first- and second-order terms, appropriately scaled. A Nichols
diagram can be obtained by cross plotting the Bode magnitude and phase diagrams, eliminating
log a). Polar plots and Bode and Nichols diagrams for common transfer functions are given in
Table 27.8.

Frequency Response Performance Measures
Frequency response plots show that dynamic systems tend to behave like filters, "passing" or even
amplifying certain ranges of input frequencies, while blocking or attenuating other frequency ranges.
The range of frequencies for which the amplitude ratio is no less than 3 db of its maximum value
is called the bandwidth of the system. The bandwidth is defined by upper and lower cutoff frequencies
o)c, or by o> = 0 and an upper cutoff frequency if M(0) is the maximum amplitude ratio. Although
the choice of "down 3 db" used to define the cutoff frequencies is somewhat arbitrary, the bandwidth
is usually taken to be a measure of the range of frequencies for which a significant portion of the
input is felt in the system output. The bandwidth is also taken to be a measure of the system speed
of response, since attenuation of inputs in the higher-frequency ranges generally results from the
inability of the system to "follow" rapid changes in amplitude. Thus, a narrow bandwidth generally
indicates a sluggish system response.

Response to General Periodic Inputs
The Fourier series provides a means for representing a general periodic input as the sum of a constant
and terms containing sine and cosine. For this reason the Fourier series, together with the super-
position principle for linear systems, extends the results of frequency response analysis to the general
case of arbitrary periodic inputs. The Fourier series representation of a periodic function f(t) with
period 2T on the interval t* + 2T > t > t* is

jv N a° ^ i n/Trt i • n7rt\/(O = -T + Zr I an cos — + bn sin — I
2, n=l \ i i I

where

1 r+2̂  nirt j
an = ~ Ĵ  /(O cos — dt

bn = J'L f(f} sin T^dt

If f(t) is defined outside the specified interval by a periodic extension of period 27, and if f(t) and
its first derivative are piecewise continuous, then the series converges to /(O if f is a point of con-
tinuity, or to l/2 [f(t+) + /(*-)] if t is a point of discontinuity. Note that while the Fourier series in
general is infinite, the notion of bandwidth can be used to reduce the number of terms required for
a reasonable approximation.

27.6 STATE-VARIABLE METHODS
State-variable methods use the vector state and output equations introduced in Section 27.4 for
analysis of dynamic systems directly in the time domain. These methods have several advantages
over transform methods. First, state-variable methods are particularly advantageous for the study of
multivariable (multiple input/multiple output) systems. Second, state-variable methods are more nat-
urally extended for the study of linear time-varying and nonlinear systems. Finally, state-variable
methods are readily adapted to computer simulation studies.

27.6.1 Solution of the State Equation
Consider the vector equation of state for a fixed linear system:

x(t) = Ax(i) + Bu(t)

The solution to this system is



Fig. 27.23 Bode diagrams for normalized (a) first-order and (b) second-order systems.

x(t) = <l>(0*(0) + I $(f - r)Bu(r) drJo

where the matrix <E>(0 is called the state-transition matrix. The state-transition matrix represents the
free response of the system and is defined by the matrix exponential series



Fig. 27.23 (Continued)

0(0 - eAt = I + At + ̂ -A2t2 + ... = 5) 1 A*r*
2! £=0 k\

where / is the identity matrix. The state transition matrix has the following useful properties:

0(0) - /
O-'(0 = O(-0
O*(0 = O(fo)
Oft + r2) = 0(̂)0̂)

Ofe - OOft - f0) = ̂ fe - O

0(0 - A0(0

The Laplace transform of the state equation is

sX(s) - Jt(0) = AX(s) + BU(s)

The solution to the fixed linear system therefore can be written as

XO = £-l[XW
= fi-^OWWO) + £Tl[<b(s)BU(s)]

where <&(s) is called the resolvent matrix and

0(0 = ̂[OCs)] = ST̂ sI - A]'1

27.6.2 Eigenstructure
The internal structure of a system (and therefore its free response) is defined entirely by the system
matrix A. The concept of matrix eigenstructure, as defined by the eigenvalues and eigenvectors of
the system matrix, can provide a great deal of insight into the fundamental behavior of a system. In
particular, the system eigenvectors can be shown to define a special set of first-order subsystems
embedded within the system. These subsystems behave independently of one another, a fact that
greatly simplifies analysis.

System Eigenvalues and Eigenvectors
For a system with system matrix A, the system eigenvectors u,. and associated eigenvalues Az are
defined by the equation
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Table 27.8 (Continued)

Nichols diagram Root locus Comments

Stable; gain margin = oo

Elementary regulator; stable; gain
margin =00

Regulator with additional energy-storage
component; unstable, but can be made
stable by reducing gain

Ideal integrator; stable
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Table 27.8 (Continued)

Nichols diagram Root locus Comments

Elementary instrument servo; inherently
stable; gain margin = oo

Instrument servo with field-control motor
or power servo with elementary Ward-
Leonard drive; stable as shown, but may
become unstable with increased gain

Elementary instrument servo with phase-
lead (derivative) compensator; stable

Inherently unstable; must be
compensated



Table 27.8 (Continued)
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Table 27.8 (Continued)

Nichols diagram Root locus Comments

Inherently unstable; must be
compensated

Stable for all gains

Inherently unstable

Inherently unstable



AVf = XfVf

Note that the eigenvectors represent a set of special directions in the state space. If the state vector
is aligned in one of these directions, then the homogeneous state equation becomes vt = Avt = Xvt,
implying that each of the state variables changes at the same rate determined by the eigenvalue A,.
This further implies that, in the absence of inputs to the system, a state vector that becomes
aligned with a eigenvector will remain aligned with that eigenvector.

The system eigenvalues are calculated by solving the nth-order polynomial equation

|A7 - A\ = A" + fl^A"-1 + • • • + a^ + a0 = 0

This equation is called the characteristic equation. Thus the system eigenvalues are the roots of the
characteristic equation, that is, the system eigenvalues are identically the system poles defined in
transform analysis.

Each system eigenvector is determined by substituting the corresponding eigenvalue into the
defining equation and then solving the resulting set of simultaneous linear equations. Only n - I of
the n components of any eigenvector are independently defined, however. In other words, the mag-
nitude of an eigenvector is arbitrary, and the eigenvector describes a direction in the state space.

Table 27.8 (Continued)
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Diagonalized Canonical Form

There will be one linearly independent eigenvector for each distinct (nonrepeated) eigenvalue. If all
of the eigenvalues of an nth-order system are distinct, then the n independent eigenvectors form a
new basis for the state space. This basis represents new coordinate axes defining a set of state variables
z,.(0, i - 1, 2, . . . , n, called the diagonalized canonical variables. In terms of the diagonalized
variables, the homogeneous state equation is

z(f) = Az

where A is a diagonal system matrix of the eigenvectors, that is,

"A, 0 ••• 0"
A= 0 A2 ... 0

_0 0 : \n_

The solution to the diagonalized homogeneous system is

Table 27.8 (Continued)

Nichols diagram Root locus Comments

Conditionally stable; becomes unstable
if gain is too low

Conditionally stable; stable at low gain,
becomes unstable as gain is raised, again
becomes stable as gain is further in-
creased, and becomes unstable for very
high gains

Conditionally stable; becomes unstable
ut high gain



z(t) = eAtz(0)

where eAt is the diagonal state-transition matrix

V1' 0 ••• 0 "
eA<= 0 c* ••• 0

_ 0 0 •••€**

Modal Matrix
Consider the state equation of the rcth-order system

x(t) = Ax(t) + Bu(t)

which has real, distinct eigenvalues. Since the system has a full set of eigenvectors, the state vector
x(t) can be expressed in terms of the canonical state variables as

x(t) = vlZl(t) + v2z2(t) + ••• + vnzn(t) = Mz(t)

where M is the n X n matrix whose columns are the eigenvectors of A, called the modal matrix.
Using the modal matrix, the state-transition matrix for the original system can be written as

<£>(;) = €A* = MeAtM~l

where eAt is the diagonal state-transition matrix. This frequently proves to be an attractive method
for determining the state-transition matrix of a system with real, distinct eigenvalues.

Jordan Canonical Form
For a system with one or more repeated eigenvalues, there is not in general a full set of eigenvectors.
In this case, it is not possible to determine a diagonal representation for the system. Instead, the
simplest representation that can be achieved is block diagonal. Let Lk(\) be the k X k matrix

"A 1 0 ••• 0"
0 A 1 ••• 0

Lfc(A) - i i A * •. 0
i : - ' - . I

_0 0 0 0 A_

Then for any n X n system matrix A there is certain to exist a nonsingular matrix T such that

X(Ai)
T~1AT= Lk̂  .f

4/Ar)_

where k} + k2 + • • • + kr = n and A,-, i = 1, 2, . . . , r, are the (not necessarily distinct) eigenvalues
of A. The matrix r-1Aris called the Jordan canonical form.

27.7 SIMULATION

27.7.1 Simulation—Experimental Analysis of Model Behavior
Closed-form solutions for nonlinear or time-varying systems are rarely available. In addition, while
explicit solutions for time-invariant linear systems can always be found, for high-order systems this
is often impractical. In such cases it may be convenient to study the dynamic behavior of the system
using simulation.

Simulation is the experimental analysis of model behavior. A simulation run is a controlled
experiment in which a specific realization of the model is manipulated in order to determine the
response associated with that realization. A simulation study comprises multiple runs, each run for a
different combination of model parameter values and/or initial conditions. The generalized solution
of the model must then be inferred from a finite number of simulated data points.

Simulation is almost always carried out with the assistance of computing equipment. Digital
simulation involves the numerical solution of model equations using a digital computer. Analog
simulation involves solving model equations by analogy with the behavior of a physical system using



an analog computer. Hybrid simulation employs digital and analog simulation together using a hybrid
(part digital and part analog) computer.

27.7.2 Digital Simulation
Digital continuous-system simulation involves the approximate solution of a state-variable model
over successive time steps. Consider the general state-variable equation

x(t) = f[x(t\ u(f}}

to be simulated over the time interval ?0 < t < tK. The solution to this problem is based on the
repeated solution of the single-variable, single-step subproblem depicted in Fig. 27.24. The subprob-
lem may be stated formally as follows:

Given:

1. Ar(fc) = tk — tk_l, the length of the kth time step.
2. Xf(t) = fi[x(t), u(f}] for f̂  < t < tk, the ith equation of state defined for the state variable

xfj) over the fcth time step.
3. u(t) for tk_l < / < tk, the input vector defined for the kth time step.
4. x(k - 1) — x(tk_i), an initial approximation for the state vector at the beginning of the time

step.

Find:

5. Xf(k) — jĉ), a final approximation for the state variable xfjt) at the end of the fcth time step.

Solving this single-variable, single-step subproblem for each of the state variables xt(t), i = 1,2,
. . . , n, yields a final approximation for the state vector x(k) — x(tk) at the end of the &th time step.
Solving the complete single-step problem K times over K time steps, beginning with the initial
condition ;t(0) = x(t0) and using the final value of x(tk) from the kth time step as the initial value of
the state for the (k + l)st time step, yields a discrete succession of approximations Jc(l) — Jt(/i)>
Jc(2) — x(t2), . . . , x(K) — x(tk) spanning the solution time interval.

Fig. 27.24 Numerical approximation of a single variable over a single time step.



The basic procedure for completing the single-variable, single-step problem is the same regardless
of the particular integration method chosen. It consists of two parts: (1) calculation of the average
value of the ith derivative over the time step as

AJC,(£) _
-*,(>*) = №(>*), M(/*)] = -£JQ - /,№)

and (2) calculation of the final value of the simulated variable at the end of the time step as

x£k) = xt(k - 1) + Ajt,.(&)

- Xffc - 1) + Af (*)/,(*)

If the function /z[jt(f), u(t)] is continuous, then t* is guaranteed to be on the time step, that is, tk_l
< f* < ffc. Since the value of t* is otherwise unknown, however, the value of x(t*) can only be
approximated as f(k).

Different numerical integration methods are distinguished by the means used to calculate the
approximation /,.(£). A wide variety of such methods is available for digital simulation of dynamic
systems. The choice of a particular method depends on the nature of the model being simulated, the
accuracy required in the simulated data, and the computing effort available for the simulation study.
Several popular classes of integration methods are outlined in the following subsections.

Euler Method
The simplest procedure for numerical integration is the Euler method. The standard Euler method
approximates the average value of the ith derivative over the Mi time step using the derivative
evaluated at the beginning of the time step, that is,

f,(k) = /,№ - 1), «(»»_,)] = /,fe-i)

i = 1, 2, . . . , n and k = 1, 2, . . . , K. This is shown geometrically in Fig. 27.25 for the scalar
single-step case. A modification of this method uses the newly calculated state variables in the
derivative calculation as these new values become available. Assuming the state variables are com-
puted in numerical order according to the subscripts, this implies

fffi = /,№(*), • • • , *,-!(*), xtf - 1), . . . , xn(k - 1), «&_!>]

The modified Euler method is modestly more efficient than the standard procedure and, frequently,
is more accurate. In addition, since the input vector u(f) is usually known for the entire time step,
using an average value of the input, such as

Fig. 27.25 Geometric interpretation of the Euler method for numerical integration.



1 [tku(k} = -— u(r) dr
&t(k) Jtk-i

frequently leads to a superior approximation of /,(&).
The Euler method requires the least amount of computational effort per time step of any numerical

integration scheme. Local truncation error is proportional to Af2, however, which means that the error
within each time step is highly sensitive to step size. Because the accuracy of the method demands
very small time steps, the number of time steps required to implement the method successfully can
be large relative to other methods. This can imply a large computational overhead and can lead to
inaccuracies through the accumulation of roundoff error at each step.

Runge-Kutta Methods
Runge-Kutta methods precompute two or more values of fj[x(t), u(f)] in the time step tk_l < t ̂ tk
and use some weighted average of these values to calculate /,-(£). The order of a Runge-Kutta method
refers to the number of derivative terms (or derivative calls) used in the scalar single-step calculation.
A Runge-Kutta routine of order N therefore uses the approximation

/,(*) = 2 V«<*>
7=1

where the TV approximations to the derivative are

/«(*) = /,№ - 1), «(>*-,)]

(the Euler approximation) and

/, = /, [*(* - 1) + A/l Ibjfa, u (tk_, + A/l fĉ J

where / is the identity matrix. The weighting coefficients w7 and bjt are not unique, but are selected
such that the error in the approximation is zero when x{(t) is some specified Mh-degree polynomial
in t. Coefficients commonly used for Runge-Kutta integration are given in Table 27.9.

Among the most popular of the Runge-Kutta methods is fourth-order Runge-Kutta. Using the
defining equations for N = 4 and the weighting coefficients from Table 27.9 yields the derivative
approximation

m = y*[fn(k) + 2fa(k) + 2fi3(v + fi4(k)]

based on the four derivative calls

Table 27.9 Coefficients Commonly Used for Runge-Kutta
Numerical Integration6

Common Name N bjt wy

Open or explicit Euler 1 All zero w: = 1
Improved polygon 2 b2l = l/2 \vl = Q

W2 = i
Modified Euler or Heun's method 2 b2i — 1 wl = l/2

W2 - l/2
Third-order Runge-Kutta 3 b2l = l/2 wl = Ve

b3i = -i W2 = 2/3
b32 = 2 w3 = l/6

Fourth-order Runge-Kutta 4 b2l — l/2 w{ = Ve
b3l = 0 w2= l/3
b32 = l/2 w3 = l/3
b43 =1 w4 = l/6



fn(k) = fMk ~ 1), wfe-i)]

/«(*) = f№k - i) + f //«,«(>*-i + f)]

/o») - /* [*(* - 1) + f //a, * ('*-i + f)]

/*№) = /,№ - 1) + Ar 7/,3, iiftj]

where / is the identity matrix.
Because Runge-Kutta formulas are designed to be exact for a polynomial of order N, local

truncation error is of the order Af^+1. This considerable improvement over the Euler method means
that comparable accuracy can be achieved for larger step sizes. The penalty is that N derivative calls
are required for each scalar evaluation within each time step.

Euler and Runge-Kutta methods are examples of single-step methods for numerical integration,
so-called because the state x(k) is calculated from knowledge of the state x(k — 1), without requiring
knowledge of the state at any time prior to the beginning of the current time step. These methods
are also referred to as self-starting methods, since calculations may proceed from any known state.

Multistep Methods

Multistep methods differ from the single-step methods previously described in that multistep methods
use the stored values of two or more previously computed states and/or derivatives in order to
compute the derivative approximation ft(k) for the current time step. The advantage of multistep
methods over Runge-Kutta methods is that these require only one derivative call for each state
variable at each time step for comparable accuracy. The disadvantage is that multistep methods are
not self-starting, since calculations cannot proceed from the initial state alone. Multistep methods
must be started, or restarted in the case of discontinuous derivatives, using a single-step method to
calculate the first several steps.

The most popular of the multistep methods are the Adams-Bashforth predictor methods and the
Adams-Moulton corrector methods. These methods use the derivative approximation

ft(k) = 2 bjft[x(k - A u(k - ;)]
7=0

where the bj are weighting coefficients. These coefficients are selected such that the error in the
approximation is zero when xt(t) is a specified polynomial. Table 27.10 gives the values of the
weighting coefficients for several Adams-Bashforth-Moulton rules. Note that the predictor methods
employ an open or explicit rule, since for these methods b0 = 0 and a prior estimate of jt/A;) is not
required. The corrector methods use a closed or implicit rule, since for these methods bt ̂  0 and a
prior estimate of xt(k) is required. Note also that for all of these methods 2jl0̂  = 1, ensuring unity
gain for the integration of a constant.

Predictor-Corrector Methods

Predictor-corrector methods use one of the multistep predictor equations to provide an initial estimate
(or "prediction") of x(k). This initial estimate is then used with one of the multistep corrector
equations to provide a second and improved (or "corrected") estimate of x(k), before proceeding to

Table 27.10 Coefficients Commonly Used for Adams-Bashforth-Moulton
Numerical Integration6

Predictor or
Common Name Corrector Points b_1 b0 b^ b2 b3

Open o r explicit Euler Predictor 1 0 1 0 0 0
Open trapezoidal Predictor 2 0 3/2 -l/2 0 0
Adams three-point predictor Predictor 3 0 23/i2 - 16/i2 5/i2 0
Adams four-point predictor Predictor 4 0 55/24 -59/24 37/24 -9/24
Closed o r implicit Euler Corrector 1 1 0 0 0 0
Closed trapezoidal Corrector 2 l/2 Vz 0 0 0
Adams three-point corrector Corrector 3 5/i2 8/i2 —Vi2 0 0
Adams four-point corrector Corrector 4 9/24 19/24 -%4 l/24 0



the next step. A popular choice is the four-point Adams-Bashforth predictor together with the four-
point Adams-Moulton corrector, resulting in a prediction of

xtf) = xt(k - 1) + ̂4 [55ftfc - 1) - 59/,№ - 2) + 37ftfc - 3) - 9ft* - 4)]

for i = 1, 2, . . . , n, and a correction of

Jt/fc) = JcX* - 1) + ̂  (9/,№), u(k)] + 19ft* - 1) - Sftfc - 2) + ftfc - 3)}

Predictor-corrector methods generally incorporate a strategy for increasing or decreasing the size of
the time step depending on the difference between the predicted and corrected x(k) values. Such
variable time-step methods are particularly useful if the simulated system possesses local time con-
stants that differ by several orders of magnitude, or if there is little a priori knowledge about the
system response.

Numerical Integration Errors

An inherent characteristic of digital simulation is that the discrete data points generated by the
simulation x(k) are only approximations to the exact solution x(tk) at the corresponding point in time.
This results from two types of errors that are unavoidable in the numerical solutions. Round-off errors
occur because numbers stored in a digital computer have finite word length (i.e., a finite number of
bits per word) and therefore limited precision. Because the results of calculations cannot be stored
exactly, round-off error tends to increase with the number of calculations performed. For a given
total solution interval tQ ̂  t < tK, therefore, round-off error tends to increase (1) with increasing
integration-rule order (since more calculations must be performed at each time step) and (2) with
decreasing step size Ar (since more time steps are required).

Truncation errors or numerical approximation errors occur because of the inherent limitations in
the numerical integration methods themselves. Such errors would arise even if the digital computer
had infinite precision. Local or per-step truncation error is defined as

e(k) = x(k) - x(tk}

given that x(k — 1) = x(tk_^ and that the calculation at the Mi time step is infinitely precise. For
many integration methods, local truncation errors can be approximated at each step. Global or total
truncation error is defined as

e(K) = x(K) - x(tK}

given that jt(0) = x(tQ) and the calculations for all K time steps are infinitely precise. Global truncation
error usually cannot be estimated, neither can efforts to reduce local truncation errors be guaranteed
to yield acceptable global errors. In general, however, truncation errors can be decreased by using
more sophisticated integration methods and by decreasing the step size Af.

Time Constants and Time Steps

As a general rule, the step size A? for simulation must be less than the smallest local time constant
of the model simulated. This can be illustrated by considering the simple first-order system

x(f) = AXO

and the difference equation defining the corresponding Euler integration

x(k) = x(k - 1) + AfA x(k - 1)

The continuous system is stable for A < 0, while the discrete approximation is stable for 11 + AAf |
< 1. If the original system is stable, therefore, the simulated response will be stable for

Af <2|1/A|

where the equality defines the critical step size. For larger step sizes, the simulation will exhibit
numerical instability. In general, while higher-order integration methods will provide greater per-step
accuracy, the critical step size itself will not be greatly reduced.



A major problem arises when the simulated model has one or more time constants |1/AZ| that are
small when compared to the total solution time interval t0 < t < tK. Numerical stability will then
require very small Af, even though the transient response associated with the higher-frequency (larger
A,.) subsystems may contribute little to the particular solution. Such problems can be addressed either
by neglecting the higher-frequency components where appropriate, or by adopting special numerical
integration methods for stiff systems.

Selecting an Integration Method
The best numerical integration method for a specific simulation is the method that yields an acceptable
global approximation error with the minimum amount of round-off error and computing effort. No
single method is best for all applications. The selection of an integration method depends on the
model simulated, the purpose of the simulation study, and the availability of computing hardware
and software.

In general, for well-behaved problems with continuous derivatives and no stiffness, a lower-order
Adams predictor is often a good choice. Multistep methods also facilitate estimating local truncation
error. Multistep methods should be avoided for systems with discontinuities, however, because of the
need for frequent restarts. Runge-Kutta methods have the advantage that these are self-starting and
provide fair stability. For stiff systems where high-frequency modes have little influence on the global
response, special stiff-system methods enable the use of economically large step sizes. Variable-step
rules are useful when little is known a priori about solutions. Variable-step rules often make a good
choice as general-purpose integration methods.

Round-off error usually is not a major concern in the selection of an integration method, since
the goal of minimizing computing effort typically obviates such problems. Double-precision simu-
lation can be used where round off is a potential concern. An upper bound on step size often exists
because of discontinuities in derivative functions or because of the need for response output at closely
spaced time intervals.

Continuous System Simulation Languages
Digital simulation can be implemented for a specific model in any high-level language such as
FORTRAN or C. The general process for implementing a simulation is shown in Fig. 27.26. In
addition, many special-purpose continuous system simulation languages are commonly available
across a wide range of platforms. Such languages greatly simplify programming tasks and typically
provide for good graphical output.

27.8 MODEL CLASSIFICATIONS
Mathematical models of dynamic systems are distinguished by several criteria which describe fun-
damental properties of model variables and equations. These criteria in turn prescribe the theory and
mathematical techniques that can be used to study different models. Table 27.11 summarizes these
distinguishing criteria. In the following sections, the approaches adopted for the analysis of important
classes of systems are briefly outlined.

27.8.1 Stochastic Systems
Systems in which some of the dependent variables (input, state, output) contain random components
are called stochastic systems. Randomness may result from environmental factors, such as wind gusts
or electrical noise, or simply from a lack of precise knowledge of the system model, such as when
a human operator is included within a control system. If the randomness in the system can be
described by some rule, then it is often possible to derive a model in terms of probability distributions
involving, for example, the means and variances of model variables or parameters.

State-Variable Formulation
A common formulation is the fixed, linear model with additive noise

x(t) = Ax(t) + Bu(t) + w(t)
y(r) = Cx(f) + v(t)

where w(t) is a zero-mean Gaussian disturbance and v(f) is a zero-mean Gaussian measurement noise.
This formulation is the basis for many estimation problems, including the problem of optimal filtering.
Estimation essentially involves the development of a rule or algorithm for determining the best
estimate of the past, current, or future values of measured variables in the presence of disturbances
or noise.

Random Variables
In the following, important concepts for characterizing random signals are developed. A random
variable * is a variable that assumes values that cannot be precisely predicted a priori. The likelihood



(̂  Start )̂

• Establish values of model parameters.
• Establish values of run parameters: Initial time £0,
final time tK, and time step &t.

• Establish initial values of the state variables x̂ O).
• Initialize time and state variables.
• Calculate the input and output at the initial time.
• Print headings.
• Print time, state variables, input, and output and
store the plot values.

• Calculate the derivatives x(&).
• Calculate the new states *(&).
• Calculate new time, input, and output.
• Print time, state variables, input, and output and
store the plot values.

• Compare time tk with final time tK.

tk<tK

^'tk>tK

• Generate plot using stored values.

( Stop )

Fig. 27.26 General process for implementing digital simulation (adapted from
Close and Frederick3).

that a random variable will assume a particular value is measured as the probability of that value.
The probability distribution function F(x) of a continuous random variable x is defined as the prob-
ability that x assumes a value no greater than x, that is,

F(x) = Pr(X < x) = Ĵ  f(x) dx

The probability density function f(x) is defined as the derivative of F(x).
The mean or expected value of a probability distribution is defined as

E(X) = I xf(x) dx = X

The mean is the first moment of the distribution. The n-th moment of the distribution is defined as

E(Xn) = | ̂  x»f(x) dx

The mean square of the difference between the random variable and its mean is the variance or
second central moment of the distribution,



Table 27.11 Classification of Mathematical Models of Dynamic Systems

Criterion

Certainty

Spatial
characteristics

Parameter variation

Superposition
property

Continuity of
independent
variable (time)

Quantization of
dependent
variables

Classification

Deterministic

Stochastic

Lumped

Distributed

Fixed or time
invariant

Time varying
Linear

Nonlinear

Continuous

Discrete

Hybrid

Nonquantized

Quantized

Description

Model parameters and variables can be known
with certainty. Common approximation when
uncertainties are small.

Uncertainty exists in the values of some
parameters and /or variables. Model parameters
and variables are expressed as random numbers
or processes and are characterized by the
parameters of probability distributions.

State of the system can be described by a finite set
of state variables. Model is expressed as a
discrete set of point functions described by
ordinary differential or difference equations.

State depends on both time and spatial location.
Model is usually described by variables that are
continuous in time and space, resulting in partial
differential equations. Frequently approximated
by lumped elements. Typical in the study of
structures and mass and heat transport.

Model parameters are constant. Model described
by differential or difference equations with
constant coefficients. Model with same initial
conditions and input delayed by td has the same
response delayed by td.

Model parameters are time dependent.
Superposition applies. Model can be expressed as a

system of linear difference or differential
equations.

Superposition does not apply. Model is expressed
as a system of nonlinear difference or
differential equations. Frequently approximated
by linear systems for analytical ease.

Dependent variables (input, output, state) are
defined over a continuous range of the
independent variable (time), even though the
dependence is not necessarily described by a
mathematically continuous function. Model is
expressed as differential equations. Typical of
physical systems.

Dependent variables are defined only at distinct
instants of time. Model is expressed as
difference equations. Typical of digital and
nonphysical systems.

System with continuous and discrete subsystems,
most common in computer control and
communication systems. Sampling and
quantization typical in A/D (analog-to-digital)
conversion; signal reconstruction for D/A
conversion. Model frequently approximated as
entirely continuous or entirely discrete.

Dependent variables are continuously variable over
a range of values. Typical of physical systems at
macroscopic resolution.

Dependent variables assume only a countable
number of different values. Typical of computer
control and communication systems (sample data
systems).



a2(X) = E(X - X)2 = |_w (x - X)2f(x) dx = £(X2) - [E(X)]2

The square root of the variance is the standard deviation of the distribution.

<r(X) = V£(X2) - [E(X)f

The mean of the distribution therefore is a measure of the average magnitude of the random variable,
while the variance and standard deviation are measures of the variability or dispersion of this
magnitude.

The concepts of probability can be extended to more than one random variable. The joint distri-
bution function of two random variables x and y is defined as

F(x,y) = Pr(X < x and Y < y) = J j_ f(xty) dy dx

where f(x,y) is the joint distribution. The ijth moment of the joint distribution is

E(XW) = J_ *' J_ y/Cx,y) dy dx

The covariance of x and y is defined to be

E[(X - X)(Y - Y)]

and the normalized covariance or correlation coefficient as

^ E[(X - X)(Y - Y)]
P Vcr2(X)cr2(F)

Although many distribution functions have proven useful in control engineering, far and away
the most useful is the Gaussian or normal distribution

F(x) = —^= exp[(-* - /*)2/2cr2]
oV27T

where /x is the mean of the distribution and cr is the standard deviation. The Gaussian distribution
has a number of important properties. First, if the input to a linear system is Gaussian, the output
also will be Gaussian. Second, if the input to a linear system is only approximately Gaussian, the
output will tend to approximate a Gaussian distribution even more closely. Finally, a Gaussian dis-
tribution can be completely specified by two parameters, JJL and cr, and therefore a zero-mean Gaussian
variable is completely specified by its variance.

Random Processes
A random process is a set of random variables with time-dependent elements. If the statistical pa-
rameters of the process (such as cr for the zero-mean Gaussian process) do not vary with time, the
process is stationary. The autocorrelation function of a stationary random variable x(t) is defined by

1 fT
(̂r) = lim — x(t)x(t + T) dt

T—xx> 2*L J-T

a function of the fixed time interval T. The autocorrelation function is a quantitative measure of the
sequential dependence or time correlation of the random variable, that is, the relative effect of prior
values of the variable on the present or future values of the variable. The autocorrelation function
also gives information regarding how rapidly the variable is changing and about whether the signal
is in part deterministic (specifically, periodic). The autocorrelation function of a zero-mean variable
has the properties

cr2 = <̂ (0) > fc(r), <fe,(T) = <M-r)

In other words, the autocorrelation function for T = 0 is identically the variance and the variance is
the maximum value of the autocorrelation function. From the definition of the function, it is clear
that (1) for a purely random variable with zero mean, ̂(r) = 0 for r =£ 0, and (2) for a deterministic



variable, which is periodic with period 7, QJJ&TrT) = a2 for k integer. The concept of time cor-
relation is readily extended to more than one random variable. The cross-correlation function between
the random variables x(t) and y(t) is

(̂r) = lim I x(t)y(t + r) dt
T—«x> J—<x>

For T = 0, the cross-correlation between two zero-mean variables is identically the covariance. A
final characterization of a random variable is its power spectrum, defined as

1 \(TG(co, x) = lim —- x(t)e -** dt
T-OO 27rT\J-T

For a stationary random process, the power spectrum function is identically the Fourier transform of
the autocorrelation function

G(o>, jc) - - (̂(r)*?-'"" dt
7T J-oo

with

<fc»(0) = |_ G(flvc) du

27.8.2 Distributed-Parameter Models
There are many important applications in which the state of a system cannot be defined at a finite
number of points in space. Instead, the system state is a continuously varying function of both time
and location. When continuous spatial dependence is explicitly accounted for in a model, the inde-
pendent variables must include spatial coordinates as well as time. The resulting distributed-
parameter model is described in terms of partial differential equations, containing partial derivatives
with respect to each of the independent variables.

Distributed-parameter models commonly arise in the study of mass and heat transport, the me-
chanics of structures and structural components, and electrical transmission. Consider as a simple
example the unidirectional flow of heat through a wall, as depicted in Fig. 27.27. The temperature
of the wall is not in general uniform, but depends on both the time t and position within the wall x,
that is, 6 = 6(x,f). A distributed-parameter model for this case might be the first-order partial
differential equation

s •*«-£=[*=•«]

where Ct is the thermal capacitance and Rt is the thermal resistance of the wall (assumed uniform).

Fig. 27.27 Uniform heat transfer through a wall.



The complexity of distributed parameter models is typically such that these models are avoided
in the analysis and design of control systems. Instead, distributed parameter systems are approximated
by a finite number of spatial "lumps," each lump being characterized by some average value of the
state. By eliminating the independent spatial variables, the result is a lumped-parameter (or lumped-
element) model described by coupled ordinary differential equations. If a sufficiently fine-grained
representation of the lumped microstructure can be achieved, a lumped model can be derived that
will approximate the distributed model to any desired degree of accuracy. Consider, for example, the
three temperature lumps shown in Fig. 27.28, used to approximate the wall of Fig. 27.27. The
corresponding third-order lumped approximation is

(̂°i r~?̂  A ° ir^i \?̂ĉ t ĉ t ct/?t

7t °2(t) = 7̂  ~7̂  ~Fp m + ° *o(0at Ĉ  Ĉ t Ct#t

030 0 -£- -̂ - 03« 0
J L ct̂ t c-tKJ L J L

If a more detailed approximation is required, this can always be achieved at the expense of adding
additional, smaller lumps.

27.8.3 Time-Varying Systems
Time-varying systems are those with characteristics that change as a function of time. Such variation
may result from environmental factors, such as temperature or radiation, or from factors related to
the operation of the system, such as fuel consumption. While in general a model with variable
parameters can be either linear or nonlinear, the name time-varying is most frequently associated
with linear systems described by the following state equation:

x(t) = A(t)x(t) + B(i)u(t)

For this linear time-varying model, the superposition principle still applies. Superposition is a great
aid in model formulation, but unfortunately does not prove to be much help in determining the model
solution.

Paradoxically, the form of the solution to the linear time-varying equation is well known7:

x(t) = 0(r,r0)Xg + f 3>(t,T)B(T)u(r) dtJtQ

where <I>(f, r0) is the time-varying state-transition matrix. This knowledge is typically of little value,

Fig. 27.28 Lumped-parameter model for uniform heat transfer through a wall.



however, since it is not usually possible to determine the state-transition matrix by any straightforward
method. By analogy with the first-order case, the relationship

0(f,f0) = exp(PA(T)£/T)
\Jto /

can be proven valid if and only if

A(t) I' A(r) dr = \ A(r) drA(t)
JtQ JtQ

that is, if and only if A(t) and its integral commute. This is a very stringent condition for all but a
first-order system and, as a rule, it is usually easiest to obtain the solution using simulation.

Most of the properties of the fixed transition matrix extend to the time-varying case:

<&(f,fa) = /

fc-'fcfo) = <&(*o,0

fcfe^Wi.fo) = ̂ fê o)

Q(t,t0) = A№(t,ti

27.8.4 Nonlinear Systems

The theory of fixed, linear, lumped-parameter systems is highly developed and provides a powerful
set of techniques for control system analysis and design. In practice, however, all physical systems
are nonlinear to some greater or lesser degree. The linearity of a physical system is usually only a
convenient approximation, restricted to a certain range of operation. In addition, nonlinearities such
as dead zones, saturation, or on-off action are sometimes introduced into control systems intention-
ally, either to obtain some advantageous performance characteristic or to compensate for the effects
of other (undesirable) nonlinearities.

Unfortunately, while nonlinear systems are important, ubiquitous, and potentially useful, the the-
ory of nonlinear differential equations is comparatively meager. Except for specific cases, closed-
form solutions to nonlinear systems are generally unavailable. The only universally applicable method
for the study of nonlinear systems is simulation. As described in Section 27.7, however, simulation
is an experimental approach, embodying all of the attending limitations of experimentation.

A number of special techniques are available for the analysis of nonlinear systems. All of these
techniques are in some sense approximate, assuming, for example, either a restricted range of op-
eration over which nonlinearities are mild or the relative isolation of lower-order subsystems. When
used in conjunction with more complex simulation models, however, these techniques often provide
insights and design concepts that would be difficult to discover through the use of simulation alone.8

Linear versus Nonlinear Behaviors

There are several fundamental differences between the behavior of linear and nonlinear systems that
are especially important. These differences not only account for the increased difficulty encountered
in the analysis and design of nonlinear systems, but also imply entirely new types of behavior for
nonlinear systems that are not possible for linear systems.

The fundamental property of linear systems is superposition. This property states that if ŷ t) is
the response of the system to û t) and y2(f) is the response of the system to u2(i), then the response
of the system to the linear combination a-̂ u-̂ t) + a2u2(t) is the linear combination a-^y^t) + a2y2(t).
An immediate consequence of superposition is that the responses of a linear system to inputs differing
only in amplitude is qualitatively the same. Since superposition does not apply to nonlinear systems,
the responses of a nonlinear system to large and small changes may be fundamentally different.

This fundamental difference in linear and nonlinear behaviors has a second consequence. For a
linear system, interchanging two elements connected in series does not affect the overall system
behavior. Clearly, this cannot be true in general for nonlinear systems.

A third property peculiar to nonlinear systems is the potential existence of limit cycles. A linear
oscillator oscillates at an amplitude that depends on its initial state. A limit cycle is an oscillation of
fixed amplitude and period, independent of the initial state, that is unique to the nonlinear system.

A fourth property concerns the response of nonlinear systems to sinusoidal inputs. For a linear
system, the response to sinusoidal input is a sinusoid of the same frequency, potentially differing
only in magnitude and phase. For a nonlinear system, the output will in general contain other fre-
quency components, including possibly harmonics, subharmonics, and aperiodic terms. Indeed, the
response need not contain the input frequency at all.



Linearizing Approximations
Perhaps the most useful technique for analyzing nonlinear systems is to approximate these with linear
systems. While many linearizing approximations are possible, linearization can frequently be achieved
by considering small excursions of the system state about a reference trajectory. Consider the non-
linear state equation

*(t) = /Wr),n(r)]

together with a reference trajectory x°(f) and reference input u°(t) that together satisfy the state
equation

*°(t) = /[*°(0,M°«]

Note that the simplest case is to choose a static equilibrium or operating point x as the reference
''trajectory," such that 0 = J(Jc,0). The actual trajectory is then related to the reference trajectory by
the relationships

x(t) = x°(t) + 8x(t)
u(t) = u°(t) + 8u(t)

where 8x(t) is some small perturbation about the reference state and 8u(f) is some small perturbation
about the reference input. If these perturbations are indeed small, then applying the Taylor's series
expansion about the reference trajectory yields the linearized approximation

8x(t) = A(t)8x(t) + B(i)8u(t)

where the state and distribution matrices are the Jacobian matrices

'̂1± ?li ... ̂T
dxl 8X2 dXn

a/2 #2 _ a/,
dx, dx2 dxn

A(t) =

?h. ?la. ... ̂
dxl dx2 dxn

J*(r)=ji°(r); M(r)=«°(r)

"a/i d/i _ dfj~
dUi du2 dum

3/2 3/2 ... 3/2
dul du2 dum

B(t) =

W« tfn .„ tfn
du, du2 dum

Jjt(0=jc0(0; M(0=M°(0

If the reference trajectory is a fixed operating point x, then the resulting linearized system is time
invariant and can be solved analytically. If the reference trajectory is a function of time, however,
then the resulting system is linear, but time varying.

Describing Functions
The describing function method is an extension of the frequency transfer function approach of linear
systems, most often used to determine the stability of limit cycles of systems containing nonlinearities.
The approach is approximate and its usefulness depends on two major assumptions:

1. All the nonlinearities within the system can be aggregated mathematically into a single block,
denoted as N(M) in Fig. 27.29, such that the equivalent gain and phase associated with this block



Fig. 27.29 General nonlinear system for describing function analysis.

depend only on the amplitude Md of the sinusoidal input m(cot) = M sin (cot) and are independent
of the input frequency co.

2. All the harmonics, subharmonics, and any dc component of the output of the nonlinear block
are filtered out by the linear portion of the system, such that the effective output of the nonlinear
block is well approximated by a periodic response having the same fundamental period as the input.

Although these assumptions appear to be rather limiting, the technique gives reasonable results
for a large class of control systems. In particular, the second assumption is generally satisfied by
higher-order control systems with symmetric nonlinearities, since (a) symmetric nonlinearities do not
generate dc terms, (b) the amplitudes of harmonics are generally small when compared with the
fundamental term and subharmonics are uncommon, and (c) feedback within a control system typi-
cally provides low-pass filtering to further attenuate harmonics, especially for higher-order systems.
Because the method is relatively simple and can be used for systems of any order, describing functions
have enjoyed wide practical application.

The describing function of a nonlinear block is defined as the ratio of the fundamental component
of the output to the amplitude of a sinusoidal input. In general, the response of the nonlinearity to
the input

m(a)t) = M sin cot

is the output

n(o)t) = Ni sin(cot + ̂ ) + N2 sin(2cot + <£2) + N3 sin(3otf + </>3) + • • •

and, hence, the describing function for the nonlinearity is defined as the complex quantity

N(M) = ~ ê
M

Derivation of the approximating function typically proceeds by representing the fundamental fre-
quency by the Fourier series coefficients

2 f772
A,(M) = - n(cof) cos cot d(cof)

T J-T/2
2 f772

#i(M) = - n(cot) sin cot d(cot)
T J-T/2

The describing function is then written in terms of these coefficients as

B,(M) .A,(M) \(Bt(M)V M.Wyi"2 [. M,(M)\]

"(M) - -M-+J ~w ̂  [(-IT) + br) J exp L; tan taw)J

Note that if n(cot) = —n(—cot), then the describing function is odd, At(M) = 0, and there is no phase
shift between the input and output. If n(cof) = n(-cof), then the function is even, B^M) = 0, and
the phase shift is IT 12.

The describing functions for a number of typical nonlinearities are given in Fig. 27.30. Reference
9 contains an extensive catalog. The following derivation for a dead zone nonlinearity demonstrates
the general procedure for deriving a describing function. For the saturation element depicted in Fig.
27.30a, the relationship between the input m(cot) and output n(cot) can be written as

10, for -D < m < D
A^MCsin cot - sin co}f), for m > D
K}M(sin cot + sin cô ), for m < -D

Since the function is odd, Al = 0. By the symmetry over the four quarters of the response period,



Fig. 27.30a Describing functions for typical nonlinearities (after Refs. 9 and 10). Dead zone
nonlinearity: (/) nonlinear characteristic; (//) sinusoidal input wave shape; (///) output wave shape;

(iv) describing-function coefficients; (v) normalized describing function.

f 2 p7'2 1
BI = 4 ~7Z n(<*>t) sin cot d(a)t)\_TTl2 JO J

4 f" f«n pr/2 -|
= — (0) sin cot d(cot) + A^MCsin cot - sin cô ) sin cot d(cot)

TT \_JO Jaiti J

where a*tl = sin"1 (DIM}. Evaluating the integrals and dividing by M yields the describing function
listed in Fig. 27.30.

Phase-Plane Method

The phase-plane method is a graphical application of the state-space approach used to characterize
the free-response of second-order nonlinear systems. While any convenient pair of state variables can
be used, the phase variables originally were taken to be the displacement and velocity of the mass

Mal



Fig. 27.306 Saturation nonlinearity: (/) nonlinear characteristic; (//) sinusoidal input wave shape;
(///) output wave shape; (iv) describing-function coefficients; (v) normalized describing function.

of a second-order mechanical system. Using the two state variables as the coordinate axis, the tran-
sient response of a system is captured on the phase plane as the plot of one variable against the
other, with time implicit on the resulting curve. The curve for a specific initial condition is called a
trajectory in the phase plane; a representative sample of trajectories is called the phase portrait of
the system. The phase portrait is a compact and readily interpreted summary of the system response.
Phase portraits for a sample of typical nonlinearities are shown in Fig. 27.31.

Four methods can be used to construct a phase portrait: (1) direct solution of the differential
equation, (2) the graphical method of isoclines, (3) transformation of the second-order system (with
time as the independent variable) into an equivalent first-order system (with one of the phase variables
as the independent variable), and (4) numerical solution using simulation. The first and second meth-
ods are usually impractical; the third and fourth methods are frequently used in combination. For
example, consider the second-order model



Fig. 27.30c Backlash nonlinearity: (/) nonlinear characteristic; (//) sinusoidal input wave shape;
(//'/') output wave shape; (iv) describing-function coefficients; (v) normalized amplitude character-

istics for the describing function; (w) normalized phase characteristics for
the describing function.

dxl dx2
— = ffĉ xj, — = f2(xl,x2)

Dividing the second equation by the first and eliminating the dt terms yields

dX2 = /2(*1,*2)
dx1 fl(xl,x2)

This first-order equation describes the phase-plane trajectories. In many cases it can be solved ana-
lytically. If not, it always can be simulated.



Fig. 27.30d Three-position on-off device with hysteresis: (/) nonlinear characteristic; (//') sinu-
soidal input wave shape; (//') output wave shape; (iv) describing-function coefficients; (v) normal-
ized amplitude characteristics for the describing function; (w) normalized phase characteristics

for the describing function.



Fig. 27.31 Typical phase-plane plots for second-order systems.9

The phase-plane method complements the describing-function approach. A describing function is
an approximate representation of the sinusoidal response for systems of any order, while the phase
plane is an exact representation of the (free) transient response for first- and second-order systems.
Of course, the phase-plane method theoretically can be extended for higher-order systems, but the
difficulty of visualizing the nth order state space typically makes such a direct extension impractical.

Name

Stable focus
or spiral

Stable node

Vortex or
center

(structurally
unstable)

Unstable focus

Saddle point

Unstable node

Roots

Damped complex
conjugate

Stable real roots

Imaginary roots

Complex conjugate
with positive real part

A point of unstable
equilibrium

Unstable real roots

Sketch

Trajectories spiral asymptotically to focus

Trajectories approach node monotonically

Conservative system or oscillator

Trajectories diverge monotonically from node



Fig. 27.31 (Continued)

An approximate extension of the method has been used with some considerable success,8 however,
in order to explore and validate the relationships among pairs of variables in complex simulation
models. The approximation is based on the assumptions that the paired variables define a second-
order subsystem which, for the purposes of analysis, is weakly coupled to the remainder of the
system.
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Roots Sketch
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coulomb friction

Semicircles center at
ends of coulomb line



27.8.5 Discrete and Hybrid Systems
A discrete-time system is one for which the dependent variables are defined only at distinct instants
of time. Discrete-time models occur in the representation of systems that are inherently discrete, in
the analysis and design of digital measurement and control systems, and in the numerical solution
of differential equations (see Section 27.7). Because most control systems are now implemented
using digital computers (especially microprocessors), discrete-time models are extremely important
in dynamic systems analysis. The discrete-time nature of a computer's sampling of continuous phys-
ical signals also leads to the occurrence of hybrid systems, that is, systems that are in part discrete
and in part continuous. Discrete-time models of hybrid systems are called sampled-data systems.

Difference Equations
Dynamic models of discrete-time systems most naturally take the form of difference equations. The
input-output (I/O) form of an nth order difference equation model is

f[y(k + ri), y(fc + rc - 1), . . . , y(k\ u(k + n - 1), . . . , u(k)} = 0

which expresses the dependence of the (k + «)th value of the output, y(k + n), on the n preceding
values of the output y and input u. For a linear system, the I/O form can be written as

y(k + n) + *„_!(%(* + n - 1) + • • • + «,(%(/: + 1) + a0(k)y(k)

= b̂ Qufc + n - 1) + ••• + b0(k)u(k)

In state-variable form, the discrete-time model is the vector difference equation

x(k + 1) = f[x(k\ u(k)}
y(k) = g[x(k), u(k)]

where x is the state-vector, u is the vector of inputs, and y is the vector of outputs. For a linear
system, the discrete state-variable form can be written as

x(k + 1) = A(k)x(k) + B(k)u(k)
y(k) = C(k)x(k) + D(k)u(k)

The mathematics of difference equations parallels that of differential equations in many important
respects. In general, the concepts applied to differential equations have direct analogies for difference
equations, although the mechanics of their implementation may vary (see Ref. 11 for a development
of dynamic modeling based on difference equations). One important difference is that the general
solution of nonlinear and time-varying difference equations can usually be obtained through recur-
sion. For example, consider the discrete nonlinear model

y(k)
**+1) = TT̂

Recursive evaluation of the equation beginning with the initial condition j(0) yields

XO)
X1) ~ TTx5j

v<2) = y(1) = [ y(0) 1 /[, + _*°L1 = *°>
'̂ 1 + y(l) L! + XO)J/ L 1 + XO)J 1 + 2y(0)

= y(2) = 0̂)
y( 1 + X2) 1 + 3X0)

the pattern of which reveals, by induction,

.,, XO
)̂ = TT̂ 5)

as the general solution.



Uniform Sampling
Uniform sampling is the most common mathematical approach to analog-to-digital (AID) conversion,
that is, to extracting the discrete time approximation y*(k) of the form

y*(k) = y(t = kT}

from the continuous-time signal y(t), where T is a constant interval of time called the sampling
period. If the sampling period is too large, however, it may not be possible to represent the continuous
signal accurately. The sampling theorem guarantees that y(t) can be reconstructed from the uniformly
sampled values y*(k) if the sampling period satisfies the inequality

T*^
0)u

where a)u is the highest frequency contained in the Fourier transform Y(aj) of y(t), that is, if

Y(a)) = 0 for all o> > a)u

The Fourier transform of a signal is defined to be

3[y(t)] = Y(a>) = l̂ ŷ e-J** dt

Note that if y(t) = 0 for t > 0, and if the region of convergence for the Laplace transform includes
the imaginary axis, then the Fourier transform can be obtained from the Laplace transform as

Table 27.12 z-Transform Pairs

X(s) x(t) or x(k) X(z)

1 1 6(0 1
2 e~kTs 8(t-kT) z~k

3 i KO -̂
s z - 1

4 I , TZ
S2 (Z - I)2

5 -L- ^ —̂T
s + a z - e aT

6 -±- l-e- (1 - e~aT*
s(s + a) (z- l)(z - e~aT)

a) . Z sin coT
s2 + o>2 Sm ™ z2 - 2z cos a)T 4- 1

8 5 z ( z - c o s w7)
— r COS 0)f -r
s2 + aj2 z2 - 2z cos coT + 1

9 1 te--r T̂
(s + a)2 (z - e~aT)2

a) _at . ze ~aT sin wT
(s 4- a)2 + a? * Sm ̂  z2 - 2ze ~aT cos coT + e ~2aT

s + a _ t z2 ~ ze~aT cos coT
(S + ay + to2 «-«»•* zz-zw-^coswr+e-2"71

12 1 ^ r2zfe +1)
(z-iy

13 a -̂ -
Z ~ a

14 <3* cos kir
z + a



Table 27.13 z-Transform Properties

x(t) or x(k) Z [x(t)] or % [x(k)]

1 ax(t) aX(z)
2 Xl(t) + x2(t) X,(z) + X2(z)
3 x(t + T) or x(k + 1) zX(z) - zx(0)
4 x(t + 2T) z2X(z) - z2x(0) - zx(T)
5 x(k + 2) z2X(z) ~ Z2x(0) - zx(l)
6 x(t + kT) zkX(z) - zkx(Q) - zk~lx(T) zx(kT - T)
1 x(k + m) zmX(z} - zwjc(0) - zm-lx(l) zx(m - 1)

8 tx(t) -Tẑ -[X(z)]
dz

9 kx(k) -z ~ [X(z)]
dz

10 e~atx(t) X(zeaT)
11 e-*x(k) X(zea)

12 akx(k) X\-}
\a)

13 kakx(k) ~zT\X\-}\
dz L WJ

^4 /̂Q\ lim X(z) if the limit exists

i ̂  , , lim [(z - !№)] if X(z) is analytic on and
1J -*v / z-»i Z

outside the unit circle

16 2) jc№) X(l)
*=o

17 i) x(kT)y(nT - kT) X(z)Y(z)
fc=0

^Fig. 27.32 Zero-order hold: (a) block diagram of hold with a sampler, (b) sampled input se-
quence, (c) analog output for the corresponding input sequence.4



Fig. 27.33 Pulse transfer function of a continuous system with sampler and zero hold.12

Y(a>) = [Y(s)]s=J<a

For cases where it is impossible to determine the Fourier transform analytically, such as when the
signal is described graphically or by a table, numerical solution based on the fast Fourier transform
(FFT) algorithm is usually satisfactory.

In general, the condition T < TT/ o>M cannot be satisfied exactly, since most physical signals have
no finite upper frequency a>u. A useful approximation is to define the upper frequency as the frequency
for which 99% of the signal "energy" lies in the frequency spectrum 0 < a) < a)u. This approximation
is found from the relation

r |F(w)|2 d co = 0.99 I |7(o>)|2 d w
Jo Jo

where the square of the amplitude of the Fourier transform | Y(cu)|2 is said to be the power spectrum
and its integral over the entire frequency spectrum is referred to as the "energy" of the signal. Using
a sampling frequency 2-10 times this approximate upper frequency (depending on the required factor
of safety) and inserting a low pass filter (called a guard filter) before the sampler to eliminate
frequencies above the Nyquist frequency ir/T, usually leads to satisfactory results.4

The z-Transform
The z-transform permits the development and application of transfer functions for discrete-time sys-
tems, in a manner analogous to continuous-time transfer functions based on the Laplace transform.
A discrete signal may be represented as a series of impulses

y*(t) = v(0)5(0 + y(l)8(t - T) + y(2)8(t - 2T) + • • •

- S X*)S(' - kT)k=0

where y(k) = y*(t = kT) are the values of the discrete signal, 8(t) is the unit impulse function, and
TV is the number of samples of the discrete signal. The Laplace transform of the series is

Y*(s) = E y(k)e~ksT
k=0

where the shifting property of the Laplace transform has been applied to the pulses. Defining the
shift or advance operator as z = est, Y*(s) may now be written as a function of z



N y(k)
Y*(Z) = lL — = z \.y(t)]

k=0 Z

where the transformed variable Y*(z) is called the z-transform of the function y*(t). The inverse of
the shift operator 1 Iz is called the delay operator and corresponds to a time delay of T.

The z-transforms for many sampled functions can be expressed in closed form. A listing of the
transforms of several commonly encountered functions is given in Table 27.12. Properties of the z-
transform are listed in Table 27.13.

Pulse Transfer Functions
The transfer function concept developed for continuous systems has a direct analog for sampled-data
systems. For a continuous system with sampled output u(t) and sampled input y(t\ the pulse or
discrete transfer function G(z) is defined as the ratio of the z-transformed output Y(z) to the z-
transformed input U(z), assuming zero initial conditions. In general, the pulse transfer function has
the form

G(.Y(z)_ = b0 + blZ-l + b2z-2 + -- + bmz-m
(Z) U(z) 1 + alZ~l + a2z~l + • • • + anz~n

Zero-Order Hold

The zero-order data hold is the most common mathematical approach to digital-to-analog (D/A)
conversion, that is, to creating a piecewise continuous approximation u(f) of the form

u(t) = u*(k) for kT < t < (k + l)T

from the discrete time signal w*(&), where T is the period of the hold. The effect of the zero-order
hold is to convert a sequence of discrete impulses into a staircase pattern, as shown in Fig. 27.32.
The transfer function of the zero-order hold is

1 1 - z"1
G(s) = -(l -€-*) = —

s s

Using this relationship, the pulse transfer function of the sampled-data system shown in Fig. 27.33
can be derived as

<fc) = (l-Z-')S [*->«?> 1
L s J

The continuous system with transfer function G(s) has a sampler and a zero-order hold at its input
and a sampler at its output. This is a common configuration in many computer-control applications.
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